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Collaborative Perception

» Sharing and fusion of sensory info (cameras, LiDAR%_ using
communication (V2X) to enhance the overall perception.

 Single-agent perception systems face challenges:
* Occlusion
e Sparse sensor observations at far distances
 Limited line-of-sight
* Multi-agent perception using cooperation can address these
challenges:
 Vehicle-vehicle communication (V2V)
 Vehicle-infrastructure communication (V2I, 12V)

* Downstream Tasks of Collaborative Perception:
« 3D Object Detection
« Semantic Segmentation




Limitations of Single-agent Perception:

* Vehicles are constrained by cost and space limitations. Often
equipped with low-precision sensors and low-power computing

devices

 Single vehicle can only have limited sight-of-view due to
obstruction of other vehicles and obstacles

* Long-range objects exhibit sparsity in sensor data, making it
prone to erroneous perception
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Collaborative Perception - Benefits

* Through obtaining extra perception info from other vehicles and
Infrastructures, vehicles can overcome the occlusion and long-
range perception issues faced by individual perception and
achieve beyond line-of-sight perception capabillity.

* Vehicles can leverage the powerful computing resources on the
cloud platform by V21/V2N to efficiently execute large-scale and
regularly updated perception models.
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Performance Comparison — Qualitative
(DAIR-V2X Dataset - Real)
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Fig. 8. Visualizations on DAIR-V2X-C.




Performance Comparison — Qualitative
(V2XSet Dataset - Simulated)
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Fig. 9. Visualizations on V2XSet.




Collaborative Perception — Requirements, Stack
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Fig. 3. The illustration of a typical V2X system architecture in practical applications.




Collaborative Perception — Histor

Collaborative Perception Methods for Ideal Scenarios

V2VNet AttFusion CRCNet Wherelcomm
(Wang et al.) (Xu et al.) (Luo et al) (Hu et al.)
F-Cooper When2com DiscoNet CoCal3D
(Chen et al.) (Liu et al.) (Li et al) (Hu et al.)
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Collaborative Perception Methods for Real-World Issues

Fig. 2. Typical collaborative perception methods in autonomous driving are classified from two perspectives: 1) how to design common collaboration modules
in ideal scenarios, which focus on collaboration efficiency and performance, and 2) how to address issues in real applications, which focus on robustness and
safety. We categorized methods based on their most prominent contribution. Citation: 1) Cooper [11], F-Cooper [10], When2com [41], V2V Net [68], DiscoNet
[38], AttFusion [79], V2X-ViT [78], CRCNet [44], CoBEVT [76], Where2comm [26], Double-M [59], CoCa3D [27], 2) RobustV2VNet [62], AOMAC [61],
SyncNet [31], TCLF [82], TaskAgnostic [39], MPDA [75], ModelAgnostic [12], CoAlign [43].




Collaborative Perception — V2X

Rodiesyen, * Vehicle-to-Everything (V2X) communication
e o LXK | can be used to communicate basic and/or
e : ! . .
T3 advanced safety information.
v o * This form of low-latency communication can
R Q =~ = allow close and far range vehicles to obtain
( Codmwnm < A info without relying on the perfect functionality
*!-‘ e i ~ of sensors at all times.
- @ E ' « Two main communication technologies:
Fig. 1. A diagram illustrating V2X scenarios. The red car faces the oc- * Dedicated Short-Range Co_mmunication
clusion issue, and the green car faces the long-range perception issue. (DSRC) - adapted from WiFi
By obtaining extra perceptual information from other vehicles (V2V) or
infrastructure (V2l), these vehicles can achieve a holistic perception of  Cellular-vV2X (C-V2X) - LTE, 5G
their surroundings, improving traffic safety. « mmWave - 6G (Sti” to mature as a pI’OdUCt)
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Datasets

A summary of existing datasets for collaborative perception in V2X scenarios. Most datasets are built upon various traffic simulators, and some
datasets collect data from the real world. See §3 for more details.

Dataset Publication Source Scenario . S . . TéSkg . . Frames Viewpoints Link
RGB Depth LIDAR Detection Tracking Segmentation

VANETs [30] GLOBECOM 2017 KITTI [31] v2v v v v - - -

MFSL [32] ICMEW 2018 KITTI [31] v2v v v - - -
T&J [23] ICDCS 2019 Real-World V2v v v 100 2 Link

V2V-Sim [20] ECCV 2020 LiDARsim [33] V2v v v v 51,200 - -
Cooplnf [34] TITS 2020 CARLA [16] V2l v v v v 10,000 6,8 Link
WIBAM [35] BMVC 2021 Real-World V2l v v v 33,092 2-4 Link
CODD [36] RAL 2021 CARLA [16] v2v v v v 8,783 10 (avg.) Link
V2X-Sim [14] RAL 2022 CARLA [16] & SUMO [37] V2v,v21 v v v v v 10,000 2-5 Link
COMAP [35] RAL 2022 CARLA [16] & SUMO [37] v2v v v 7,788 2-10 Link
OPV2V [15] ICRA 2022 CARLA & OpenCDA [17] v2v v v v v v 11,464 2-7 Link
AUTOCASTSIM [39] CVPR 2022 CARLA [16] V2v v v v . - Link
DAIR-V2X-C [12] CVPR 2022 Real-World V21 v v v 38,845 2 Link
V2XSet [21] ECCV 2022 CARLA [16] & OpenCDA [17] V2V,V2I v v 11,447 2-5 Link
DOLPHINS [40] ACCV 2022 CARLA [16] vavval v v v v 42,376 3 Link

CARTI [41] ITSC 2022 CARLA [16] V2I v v 11,000 2 -
V2V4Real [13] CVPR 2023 Real-World v2v v v v v 20,000 2 Link
V2X-Seq (SPD) [42] CVPR 2023 Real-World v2vyval v v v 15,000 2 Link
DeepAccident [43] - CARLA [16] vavyval v v v v v 57,000 5 Link




Collaborative Perception — Areas of
Research

* Fusion Stage: Early, Intermediate, Late
« Performance-bandwidth tradeoff: encode features (feature

compression, confidence maps)

« Communication latency (time delay between CAVS)

| 0ssy communication: Feature partly damaged
Domain Gaps: Different kinds of sensors, agents and configs

| ocalization and Pose Errors
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Areas of Research — Fusion Stage
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Areas of Research — Performance
Bandwidth Tradeoff

* Given the limitation of bandwidth, major portion of literature has
focused on improving the performance-bandwidth tradeoff, such
that the performance can still be improved while efficiently
utilizing the bandwidth by encoding features

* Encoding features can be achieved by:

« Feature compression
« Confidence maps (consider reduced set of links)

* |n addition to pure compression, recent studies have been
focusing on only sharing the most important features in terms of
confidence maps in the spatial or spatio-temporal domain
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Areas of Research — Communication
Latency

» Delay btw agent | obtaining a point cloud, processing, sending,
and it being received at agent J. This can cause feature/pose
alignment issues

* The feature misalignment can cause severe fusion problems,
Impacting the overall detection/segmentation performance.




Areas of Research — Lossy Communication

« Communication is prone to loss where features are
partially/fully corrupted due to packet collision.

« Research community active in this domain in looking into
trainable models that can repair the damaged parts of the
feature, mainly using historical context.

o Scene Reconstruction




Areas of Research — Domain Gaps

* Different agents use

- Different sensors/modalities
= Lidar -> Point cloud
= Camera -> RGB image
* |R -> Thermogram image
- Sensors from different vendors, i.e
= models with different inference capabilities
= models with different sensing range

. Eetween vehicles and road-side units, additional discrepancies can
e:

- Sensor height -> pose estimation differences
* Sim-2-real
- Simulation does not provide very diverse training data




Challenges specific to "co-operation”

 Training might be expensive, eg when:
- Agent with a new modality is introduced

 How to manage confidence on the inference

* identifying correspondence of same neighbor in different feature
sets
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Study 1: Cooperative LIDAR Object Detection
via Feature Sharing in Deep Networks

Problems:
- Early-stage feature fusion is efficient, but bandwidth-hungry

- Fully-processed feature sharing is bandwidth-efficient, but does not
carry the expected benefits from cooperation

Major Contribution:

- Proposes intermediate feature sharing as an efficient fusion method

- Sharing partially-processed data strikes a balance between performance and
comm. Cost.

- Proposes a training pipeline for cooperative perception.
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Study 1: Cooperative LIDAR Object Detection
Vla Feature Sharlng |n Deep NetW TABLE I: The architecture of Proposed networks
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Fig. 1: The overview of feature sharing procedure. The cooperative vehicle transfers the LIDAR point-cloud to feat
domain after an initial rotation alignment. After performing a translation transformation on the received feature-maps,
aligned received feature-maps are accumulated with the feature-map produced by receiver vehicle and fed through the object
detection module
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Study 1: Cooperative LIDAR Object Detection
via Feature Sharing in Deep Networks
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Fig. 3: Comparison between performance of single vehicle object detection and feature sharing cooperative object detection
in an arbitrary scenario. blue and red bounding boxes represent ground truth and output of the object detection; (a)The
single vehicle object detection at ego-vehicle, (b) The single vehicle object detection at coop-vehicle and (c) F5-COD at
ego-vehicle

 target Ais not detectable by
either vehicles and there is a
lack of consensus on target B
between cooperative vehicles
if they rely solely on their own
sensory and inference units.

 However, target A is

detectable if FS-COD is
applied and the lack of
consensus on target B is
solved.

&
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Study 2: Feature Sharing and Integration for Cooperative
Cognition and Perception with Volumetric Sensors

Main challenge to address:
- Minimizing localization error in cooperative setting.

- Proposes Deep Feature Sharing;
- robust to GPS-related localization error.
- balanced in compute cost and information-richness.




Study 2: Feature Sharing and Integration for Cooperative
Cognition and Perception with Volumetric Sensors

Vehicle &0 Pedestrian 50 Vehicle Pedestrian
95 ' e
i 75 as |
a0 I 0 I a0 !
< < 65 <
75}
85 &0
55 ¥ A0t
—~—_
&0 50 — 65
i 2 4 & 0 2 4 6 0 0.5 1 1.5 2 ] 0.5 1 1.5 2
Number of COOP Number of COOP GPS MNoise (m) GPS Noise (m)
|+ Max-out(SVT) —&— Max-norm(5SVT) Sum(SVT)—+—RIS(SVT)—+— HSM(SVT)|
Scalability Test GPS Noise Sensitivity Test

Fig. 7: The effect of different information aggregation functions with identical network paremeters. The network is trained
based on S5VT strategy.




Study 3: V2X-VIT: Vehicle-to-Everything
Cooperative Perception with Vision Transformer

* Problems with SOTA:
« Heterogeneous agents (infrastructure, agents) and configuration
discrepancies such as noise levels, installation heights, and sensor modality

* GPS localization noises and asynchronous sensor measurements of AVs and

Infrastructure can cause inaccurate coordinate transformation and lagged
sensing info.

* Proposal:

 Customized heterogeneous multi-agent self-attention module that explicitly
considers agent types and their connections when performing attentive
fusion

« A multi-scale window attention module that can handle localization errors
using multi-resolution windows in parallel

 Integrate a delay-aware positional encoding to handle time delay uncertainty
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Study 3: V2X-VIT: Vehicle-to-Everything
Cooperative Perception with Vision Transformer
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Study 3: V2X-VIT: Vehicle-to-Everything
Cooperative Perception with Vision Transformer
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Study 3: V2X-VIT: Vehicle-to-Everything
Cooperative Perception with Vision Transformer

(a) Swin (b) Axial (b) CSwin (c) MSwin

Fig. 8: Visualizations of approximated receptive fields (blue shaded pixels) for
the pixel for (a) Swin [30] (b) Axial [44], (¢) CSwin [8] and (d) MSwin at-

tention. MSwin obtains multi-scale long-range interactions at linear complexity.
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Study 4: Where2comm: Communication-efficient
Collaborative Perception via Spatial Confidence Maps

 Problems with SOTA:

¢ Some previous works make an assumFtion that once agents collaborate, they are
obligated to share perceptual info of all spatial areas equally. This can waste
bandwidth as large proportion of spatial areas may contain irrelevant info.

« Some previous works consider fully-connected communication graphs. This is
excessive because agents that have similar global features do not necessarily need
info from each other.

e ad

* Proposals:

* Includes a spatial confidence generator, which produces a spatial confidence map to
Indicate perceptually critical areas

« Spatial confidence-aware communication module which leverages the spatial
confidence map to decide where to communicate via novel message packing, and
who to communicate via novel communication graph construction

« Spatial confidence-aware message fusion, which uses novel confidence aware multi-
head attention to fuse all message received from other agents, upgrading the feature
map for each agent

&
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Study 4: Where2comm: Communication-efficient
Collaborative Perception via Spatial Confidence Maps
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Figure 2: System overview. In Where2comm, spatial confidence generator enables the awareness of
spatial heterogeneous of perceptual information, spatial confidence-aware communication enables
efficient communication, and spatial confidence-aware message fusion boosts the performance.
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Performance Comparison — Performance
Bandwidth Trade-o
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Figure 3: Where2comm achieves consistently superior performance-bandwidth trade-off on all the
three collaborative perception datasets, e.g, Where2comm achieves 5,000 times less communication
volume and still outperforms When2com on CoPerception-UAVs dataset. The entire red curve comes
from a single Where2comm model evaluated at varying bandwidths.




Performance Comparison — Robustness
to Communication Latency
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Figure 4: More communication rounds continuously improve performance-bandwidth trade-off.




Performance Comparison: Robustness to
Localization Errors
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Figure 5: Robustness to localization error. Gaussian noise with zero mean and varying std is
introduced. Where2comm consistently outperforms previous SOTAs and No Collaboration.
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Future Directions:

Performance-bandwidth tradeoff:
 To further improve the tradeoff, research community is considering spatial+temporal domain
simultaneously so that only the most important features can be shared
Pragmatic Communication:

* Most studies consider a very abstract module of communication, with perfect reception and limited
number of collaborative agents (<=5)

 We are cu_rrentl\élooking into integrating a pragmatic communication module using state-of-the-art
simulator like NS-3 to consider all the eventualities of V2X, especially in congested scenarios
Datasets:
» Current datasets are limited to 5 collaborative agents; however this needs to be increased to
replicate realistic scenarios
Transmission Scheme:

» Currently, most studies utilize either a broadcast or unicast approach where same/similar information
IS sent t0 the channel numerous times. Instead, we can focus on using infrastructure that can relay
the info once to the related vehicles. This can greatly reduce the burden on the bandwidth.

Domain Adaptation (explained earlier)
Security and Privacy

&
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Thank you
Ghayoor.shah@ucf.edu
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